
www.manaraa.com

Traceable Data Structures

Umut A. Acar∗ Guy E. Blelloch† Srinath Sridhar‡ Virginia Vassilevska§

September 17, 2006

Abstract

We consider the problem of tracking the history of a shared data structure so that a
user can efficiently view any previous version of the structure (persistence), and efficiently
recover information about all previous operations performed on the data structure, including
both reads and writes (traceability). We present a mechanism that works for any bounded-
degree linked structure. The mechanism supports any sequence of m operations in O(m)
time assuming a RAM, and in O(mα(m,m)) assuming a pointer machine. We show that
the bound is tight for a pointer machine.

Applications of traceable data structures are copious. For example, one could implement
the technique for protecting privacy, for auditing, error notification and even to automat-
ically dynamize static algorithms. In the case of privacy, the approach could be used for
storing data structures with sensitive information. If some information is leaked or improp-
erly used, then it is possible to go back and see who read that data or even to trace through
how the data was read. This gives some protection, or at least a deterrent, against improper
access to the data. With traceable structures it is also possible to track when an error was
introduced into a data structure, or to identify the readers of any erroneous data so they can
be notified. In algorithm dynamization, any change to the input of the algorithm changes
the output only of the functions that read the change. A traceable data structure allows for
all these functions to be found efficiently so they can be reexecuted on the new input.

Classification: Data structures

∗umut@tti-c.org. Toyota Technological Institute, Chicago, IL.
†blelloch@cs.cmu.edu. Carnegie Mellon University, Pittsburgh, PA.
‡srinath@cs.cmu.edu. Carnegie Mellon University, Pittsburgh, PA.
§virgi@cs.cmu.edu. Carnegie Mellon University, Pittsburgh, PA.

www.manaraa.com

1 Introduction

We consider the problem of tracking the history of a data structure so that a user can efficiently
view any previous version of the structure (persistence), and efficiently recover information
about all operations performed on the data structure, including both reads and writes (trace-
ability). We imagine the data structure is shared by many users who can read and update it.
We present a general mechanism that works for any bounded-degree linked structures.

This work extends the seminal work of Driscoll et al. [7] on persistent data structures. In
a persistent data structure new versions of the structure can be created which effectively copy
the previous version. Although writes (updates) can only be applied to the latest versions (the
leaves of a version tree), the user can go back and read the data from any version. Driscoll et al.
distinguish between partially and fully persistent structures. In a partially persistent structure
the versions have to be in a linear order, and in a fully persistent structure the versions can
form a version tree. Driscoll et al. describe an implementation technique that can be applied
to general bounded-degree linked structures and show that using their technique all operations
(creating new versions, creating new nodes, reading and writing) take constant amortized time
for both partial and full persistence. Later work by Dietz extends the results by relaxing the
bounded degree constraint [3]. Dietz and Raman [4] and Brodal [1] show how to obtain partial
persistence in worst case constant time. Other work on persistence includes work on confluently
persistent data structures (e.g. Fiat and Kaplan [8]), purely functional data structures (e.g.
Okasaki [15]) and persistent data structures for a specific application (e.g. [2, 13, 6]).

We generalize persistent structures by allowing the tracking of previous operations, including
both reads and writes. The interface allows a user, perhaps just a privileged user, to find the
next read or write operation that was applied to any node of any version of the structure. For
example, the user can go back in time to a particular version and for any node ask to see the
next version at which it was read (or written). It can also extract any auxiliary information
from that operation—e.g., the user who executed that read or write. The interface can be
used to go back and trace how a user traversed a structure. Furthermore, the modifications or
accesses of a particular node can be traced efficiently in order.

Algorithmically, the techniques used to achieve efficient traceability differ from those of
partial persistence. This is because unlike the partially persistent writes we allow reads to
be performed at any time in the past. Writes in the past could affect the future and full
persistence tackles this problem by simply assuming non-linear ordering of time stamps. For
(partial) traceability however, we show that prior techniques can be adapted to maintain a
linear order of time while supporting accesses in the past.

As with previous work on persistent data structures, our framework supports operations
on general bounded-degree linked data structures. We assume standard operations that create
new nodes, and read and write any field of a node. We distinguish between partially and fully
traceable data structures which, just as in the framework of Driscoll et al., differ in that a write
to a partially traceable structure can only be performed at the latest version, and a write for a
fully traceable structure creates a new leaf of the version tree and writes at that version. For
the purpose of tracing we assume all operations are tagged with the user who performed it,
either implicitly or explicitly. We assume the linked structure is accessed through a root node.

We present a new abstraction of the node splitting method of Driscoll et al., which we call
interval splitting. The notion of node splitting is separated from that of writing to a persistent
data structure. We view splitting as an operation in itself on the nodes of an interval data
structure which we call intervals. An interval data structure is a persistent data structure
which supports a single operation—interval splitting, and whose intervals represent versions of
vertices of a linked structure over time. When performed on an interval, the splitting operation

1

www.manaraa.com

splits the interval into two so that the two new intervals split the timeframe of the previous
one at any time within that timeframe, as specified by the user. The operation also ensures
that the number of in- and out-pointers is constant for any interval in the structure. This
view of node splitting has some advantages. For example, it allows us to maintain the constant
degree invariant no matter what we are tracking—versions of the data structure, reads, any
other information stored on the nodes. As long as only a constant number of interval splitting
calls are done per update, an amortized constant bound on interval splitting can guarantee
that all operations are efficient. Another advantage of this view of node splitting is that a fully
persistent write is easy to implement as an interval split followed by a partially persistent write.
Recall that as presented by Driscoll et al. [7] one had to create two new node copies which
slightly complicated the analysis.

Intervals in an interval data structure are similar to the node copies of Driscoll et al. The
main difference is that one can create an interval with any start time after the initial creation of
a node. For example, in a traceable data structure for every access of a node there is an interval
of the node which starts at the time of the access. This enables us to store the intervals of every
node in a Split-Find-Insert [10, 12] data structure. By naming the sets in each Split-Find-Insert
data structures properly, we can support efficient operations which given a node and a time can
return the next or previous time when the node was read or written.

The technique we present supports any sequence of m operations in O(m) time assuming a
RAM, and in O(mα(m′,m′)) assuming a pointer machine where m′ is the maximum number
of operations performed on a particular node. We show that the given time is optimal for a
pointer machine. The space required is bounded by O(m).

After defining the interface of a traceable data structure in Section 3, we provide a formal
specification of interval data structures in Section 4 and then extend this specification to an
implementation of traceable data structures in Section 5. In Section 6 we show that our tech-
nique is tight for a pointer machine. Possible applications of our data structure are described
in Section 2.

2 Applications

Applications of traceable data structures are copious. As examples we can implement the tech-
nique for protecting privacy, auditing, error notification and even to obtain dynamic algorithms
automatically. We outline some of them here.

Privacy Violation and Auditing. Several organizations maintain large databases that
contain sensitive documents linked to one another (e.g. phone and medical records). In the
case of phone records, a person could contain links to everyone who has been contacted within
a certain time frame. If some information is leaked or improperly used it is then possible to go
back and see who read that data or to trace through how they read that data. Furthermore, we
would also want to examine all other records that were read by the same person. In the case of
auditing, if the data was improperly updated at some point in the past it is possible to go back
and trace when and by whom it was updated.

Error Notification. Database transactions are simply a series of read and write operations
(e.g. bank transactions). Such databases are themselves linked, for instance a bank account
contains several other account numbers of the same user or organization. A typical linked
traversal of the database, might query for a certain type of account to obtain an account number
(reading a pointer). This can be followed by a query to determine the balance on that account
number (reading a value) and finally charging a certain amount (updating a value). However,
one might find a mistake in the value stored and therefore all the transactions that happened

2

www.manaraa.com

within a time frame could have read incorrect values. It is therefore important to automatically
notify the readers of this value that the transaction was invalid. Our data structure allows for
all readers to efficiently be traced through one by one.

Dynamizing Algorithms. Finally, we can obtain practical dynamic algorithms directly
from static algorithms. We simply run a static algorithm (say a shortest paths algorithm) on
the input. This algorithm can be viewed as performing a series of reads on the input, several
functional computations each involving a subset of the input data, followed by writing the
output over time. If the input changes by a small amount (say an edge deletion), then only a
subset of the functions would be affected. Our technique with some additional implementation
details can be used to identify the reader functions so that just those functions need to be rerun.

3 Linked and Traceable Data Structures

Linked Data Structures. We define a linked data structures as a set of nodes, each of which
consists of a bounded number of fields that contain pointers to other nodes or primitive values
(integers etc.). In our exposition we will sometimes just consider pointer fields to avoid special
casing for primitive values. We distinguish one node as the root of the data structure—a constant
number of roots can be represented by an extra level of indirection through the root. For all
our bounds, we assume that every node v has (in- and out-) degree bounded by a constant Cd.
A linked data structures supports newNode, read, and write operations for creating new nodes,
and reading from and writing into fields.

Traceable Data Structures. A traceable data structure is a linked data structure with
multiple versions each derived as a copy of an existing version, and which maintains a traceable
history of all read and write operations ever applied to any version. A particular version of
a node is referred to as a handle to the node. Whenever a version is created from another, it
creates a child of the other in a version tree. In addition to the version tree, we maintain a total
order on the versions based on a pre-order traversal of the version tree. We allow any operation
on any version. A write to a version only applies to that version. To enable the inspection of
reads and writes, the user must provide an identity, which we assume to be a positive integer
(we use identity zero for initialization), when running these operations.

More precisely, we define a traceable data structure as a tuple (V, F, T, H,R, W), where
V is the set of nodes; F is the set of fields; T is a set of versions along with a partial order
<p based on the version tree and a total order < based on the pre-order traversal of the tree,
T ⊇ {t0, t∞}; H is the set of handles such that H ⊆ V × T ; R is the set of reads such that
R ⊆ Z+ ×H × F × (V ∪ {null}); W is the writes such that W ⊆ Z+ ×H × F × (V ∪ {null}).
The set of handles represent all possible access points to the data structure.

Figure 1 shows the specification of the operations for traceable data structures. The newNode
operation takes a handle and creates a node in the version specified by the handle. The read
operation takes the identity of the reader, a handle to a node v in version t, and a field and
returns the value stored in the field of v in version t. The write operation takes the identity
of the writer, a handle to a node v in version t, a field, and a value, and stores the value at the
specified field of v in version t. The newVersion operation takes a handle to the root node in
version t, and creates a new handle to the root in a version t2 that is greater than t but less
than all other existing versions.

The getNextReadHandle and getNextWriteHandle operations return handles to the earliest
read and write after the given handle respectively. Operations getPreviousReadHandle and
getPreviousWriteHandle are symmetric and can be defined similarly. These operations can

3

www.manaraa.com

TDS = Traceable Data Structure

function newTDS (F) =

h← (root, t0)
W ← {(0, h, f, null) | ∀f ∈ F}
TDS← ({root}, F, {t0, t∞}, {h}, ∅, W)
return h

function newNode(h as (, t)) =

V ← V ∪ {v}, where v 6∈ V
h′ ← (v, t)
H ← H ∪ {h′}
W ←W ∪ {(0, h′, f, null) | ∀f ∈ F}
return h′

function read (id, h as (v, t), f) =

let (id, (v, t1), f, v′) ∈W, where
t1 ≤p t ∧
(∀(v, t2) ∈ H. t2 ≤p t⇒ t2 ≤p t1)

H ← H ∪ (v′, t)
R← R ∪ {(id, h, f, v′)}
return (v′, t)

// Requires that t1 = t2
function write(id, h1 as (v1, t1), f, h2 as (v2, t2)) =

W ←W ∪ {(id, h1, f, v2)} \ {(id, h1, f, v) | ∀v ∈ V }}

// Requires that h = (root, t)
function newVersion(h as (v, t1)) =

T ← T ∪ {t2}, where (t2 6∈ T) ∧ (t1 <p t2)∧
(t1 < t2) ∧ (∀t ∈ T.t ≤ t1 ∨ t > t2)

h′ ← (v, t2) ; H ← H ∪ {h′}
return h′

function getNextReadHandle (h as (v, t1)) =

Rv ← {t | (id, (v, t), f, v′) ∈ R ∧ t > t1}
if Rv = {} then return null else return (v, min Rv)

function getNextWriteHandle(h as (v, t1)) =

Wv ← {t | (id, (v, t), f, v′) ∈W ∧ t > t1}
if Wv = {} then return null else return (v, min Wv)

function getReadsWrites(h) =

Rh ← {(, h, ,) ∈ R} ; Wh ← {(, h, ,) ∈W}
return (Rh, Wh)

Figure 1: A specification for operations on traceable data structures.

be composed to list through all reads and writes of a given node in order. The getReadsWrites
operation returns the reads and the writes of the given handle.

Traceable data structures are called partially traceable if newVersion and write can only
be applied to the greatest existing version (excluding t∞) and fully traceable otherwise. Note
that the structure does not maintain a version tree explicitly, but the tree is implicit in the way
the versions were created and the total order of the versions.

4 Interval Data Structures and Interval Splitting

An interval data structure explicitly represents the different values (or states) that each node
of a linked data structure takes over time in the form of (time) intervals. The data structure
is an abstraction of the node splitting method of Driscoll et al. [7]. An interval data structure
supports a single operation, interval splitting, while maintaining key invariants which allow us
to efficiently extend the data structure to both a persistent and a traceable data structure.
We show an amortized O(1) time bound for interval splitting and a linear space bound in the
number of (explicit) interval splits.

An interval data structure relies on an auxiliary data structure to store intervals. This
data structure provides init aux and insert aux operations for initialization and insertion
(see Figure 3). By choosing an auxiliary data structure, interval data structures can be used to
implement both persistent and traceable data structures (Sections 5 and 5.2).

4.1 The interval data structure

Given a set of nodes V , a set of fields F , and a set of time stamps T ⊇ {t0, t∞} drawn from a
totally ordered universe U , we define an interval data structure as a tuple (V, F, T, I, ρ), where
I ⊆ V × T × T is a set of intervals, and ρ : I × F → {I ∪ null} is a points-to function. Each
interval i ∈ I is a tuple consisting of a node and a time interval defined by two time stamps.
The time interval of an interval i = (v, t, t′), denoted by τ(i), is the half open interval [t, t′).
We assume that always t′ > t. We say that an interval i points-to another interval j, if for

4

www.manaraa.com

a

b c

a

b c

d

a

c

d

time=0 time = 1 time=2

time = 0 time = 1 time = 2 time =∞

a

b

c

d

a0 a1
a2

b0 b1

c0 c1

d1 d2

a2

id : a2 id : null

a0, a1

id : null

id : c1
id : null

id : null

b0, b1

c0 c1

d0, d2

Ua

Ub

Uc

Ud

Figure 2: Three versions of a tree, a corresponding interval data structure and the update
Split-Find-Insert data structures for the nodes.

some field f ∈ F , ρ(i, f) = j. The interval data structure maintains the time stamps T in an
order-maintenance structure [5], which supports the insert, successor, and compare operations
in constant time—we write insertTS(·), successorTS(·), and t < t′ for these operations.

The versions used in the specification of traceable data structures (Section 3) are represented
by the time stamps of the interval data structure as follows. For partially traceable data
structures, the versions are totally ordered and there is a one-to-one correspondence between
them and the time stamps. In the case of fully traceable data structures, the versions are
partially ordered in the form of a version tree. As in previous work (e.g. [7]), we map this
partial order into a total order by a pre-order traversal of the version tree. The time stamps
follow this total order.

To elucidate the maintained invariants of interval data structures, we use the following
definitions. We say two time intervals, [ti, t′i) and [tj , t′j) overlap if [ti, t′i) ∩ [tj , t′j) 6= ∅. We
say that two intervals i and j overlap if their time intervals overlap. We define an order on
non-overlapping time intervals by comparing their start times [ti, t′i) < [tj , t′j) if ti < tj assuming
[ti, t′i) ∩ [tj , t′j) = ∅. Given a node v, we write Iv to denote the set of intervals of v; formally
Iv = {(v, t, t′) | (v, t, t′) ∈ I}. If i ∈ Iv, then we say that i is an interval of (or belongs to)
v. Given an interval i = (u, t,) and any interval j ∈ Iv, we define image(i, j) as the interval
j′ ∈ Iv which covers the start time of i, i.e. t ∈ τ(j′).

We say that an interval i dominates j (and j is dominated by i) if i ∈ Iu and j ∈ Iv overlap and
i points to its image on j, i.e., ρ(i, f) = image(i, j) for some f ∈ F . We write dominators(j) to
denote the set of dominators of j. Similarly, we write dominated(j) to denote the set of intervals
dominated by j. We write N(i) = dominated(i) ∪ dominators(i) for the set of neighbors of j.
For convenience, we define dominatedf (i) = {j ∈ dominated(i)|ρ(i, f) = image(i, j), f ∈ F}.

Figure 2 shows the versions of a tree at three successive times and the representation of the
versions as an interval data structure. The interval data structure consists of intervals drawn as
horizontal lines. The intervals of each node are enclosed within a dotted rectangle representing
the node. For instance, the set of ordered intervals corresponding to node a is a0, a1 and a2.
The pointers (drawn as curved arrows) correspond to the tree pointers. For example, interval
a0 points to and dominates b0 and c0. Interval d2 is defined over time [2,∞], while c1 is defined
over [1,∞]. Intervals c1 and d2 therefore overlap. Since c1 contains a pointer to d1 it is also
a dominator of d2. Similarly dominated(a1) is {b1, c1}. The image of c1 on d2 is interval d1.
Note that there are many different interval data structures for representing the same set of
trees—e.g., node d need not be represented by 2 intervals here—d1 and d2 can be merged.

An interval data structure maintains the following correctness and performance invariants
to enable correct and fast access to the history.

5

www.manaraa.com

P = (V, F, T, I, ρ) // The data structure

function iSplit (i) =

if N(i) > C then choose tmed ∈ T s.t. N(i) is split in half

return (iSplitAtTime (i, tmed))
else return i

function iSplitAtTime (i, t) = // Precondition: t ∈ T ∧ t ∈ τ(i)
(v, ti, t

′
i)← i

if t = ti then return i
j ← (v, t, t′i)
for each f ∈ F do if ((i, f), k) ∈ ρ then ρ← ρ ∪ {((j, f), image(j, k))}
for each k ∈ I and f ∈ F s.t. ((k, f), i) ∈ ρ do ρ← ρ ∪ {((k, f), image(k, i))} \ {((k, f), i)}
i← (v, ti, t); I ← I ∪ {j}; insert aux(i, j)
for each k ∈ N(i) do iSplit(k)
return j

Figure 3: The iSplit and iSplitAtTime operation.

Invariant 1 (Correctness)
1. The intervals of a node do not overlap and cover a continous time interval ending at t∞.

2. If an interval i points to another interval j, then j is the image of i on j.

Notice that 2 implies that if i points to j, then i and j overlap and hence i dominates j.

Invariant 2 (Performance)
An interval dominates and is dominated by a constant number of intervals (i.e., the number of
neighbors is constant).

Motivation for an interval data structure The interval data structure formalizes the node
splitting method as given in the Driscoll et al. paper [7] which associates node splitting directly
with the write operation. Although this formulation does not offer much new technical insight
it has several advantages. By allowing split to be called directly, one can use it to maintain the
invariants with any operation which stores new timed information on nodes. Furthermore, by
supporting an efficient splitting operation which splits an interval at a particular time, reads and
writes (partially or fully traceable) are relatively easy to implement and analyze. The ability to
create intervals with any start time also allows us to later store read and write information in
an interval starting at the read or write time. This makes it possible to use a Split-Find-Insert
data structure directly on the node intervals for tracing reads or writes. Moreover, with an
explicit split operation, a fully persistent (or traceable) write becomes an easy extension of a
partially persistent (or traceable) write as seen in Section 5.

The iSplit and iSplitAtTime operations. An interval data structure supports two types of
interval splitting, iSplit and iSplitAtTime. Given an interval data structure that satisfies the
correctness and performance invariants, the iSplit and iSplitAtTime operations increase the
number of intervals while preserving the invariants. For completeness we include pseudo-code
(Figure 3) for these operations.

The iSplit operation takes an interval i = (v, ti, t
′
i) and splits i, if it has more than C

neighbors, where C is a constant to be specified later in the analysis. To split i, the operation
finds a suitable time tmed that splits the neighbors roughly in half—we show later in this
section that picking tmed as the median of the starting times of the neighbors suffices. After
determining tmed, iSplit calls iSplitAtTime at tmed. The iSplitAtTime operation takes an
interval i = (v, ti, ti′) and a time t ∈ τ(i), creates a new interval j for v with time interval
[t, ti′) and copies the fields of i to j. The end time of i is updated to be t. The operation then

6

www.manaraa.com

updates the intervals pointing to i, which may now point to j, and inserts j into the auxiliary
data structure. Splitting i into two can cause the performance invariant to be violated by
increasing the number of intervals that the neighbors dominate or are dominated by. To restore
the performance invariant, the operation calls iSplit on all neighbor intervals of i.

Splitting the time interval of i between j and (the new) i at t ensures the first correctness
invariant. The second correctness invariant is ensured by making each new field point to its
image and updating the pointers into i. In the next section we show that the performance
invariant is also maintained.

4.2 Analysis

Consider an implementation of an interval data structure as a graph, where each node represents
an interval. Each node is tagged with the start time of its interval and has bidirectional pointers
to its neighbors (defined by the union of its dominators and the intervals that it dominates).
This implementation requires maintaining the neighbor pointers consistently when an interval
is split. This can be achieved by extending iSplitAtTime so that the neigbors with start time
greater than t (the time of the split) are now changed to point only to the new interval and
all neighbors that contain t point to both intervals. Because of the performance invariant,
maintaining the neigbor pointers takes constant time.

We prove that this implementation enables splitting one interval in amortized constant time.
We begin by showing that splitting an interval produces two new intervals that each have at
most half the number of neighbors as the split interval. Furthermore, we show that the number
of new pointers created is bounded by 2 · Cd (Cd is the bound on the degree of a node in the
underlying linked data structure).

Lemma 1
Suppose iSplit splits an interval i into intervals i1 and i2. Then, we have 1) |N(i1)| ≥
b|N(i)|/2c − Cd, 2) |N(i2)| ≥ b|N(i)|/2c − Cd, and 3) |N(i1)|+ |N(i2)| ≤ |N(i)|+ Cd.

Proof: For the proof, we will show how to pick tmed to ensure the two properties. Consider
two nodes u and v and two intervals i and j such that i ∈ Iu and j ∈ Iv. We know that if
i dominates j then, there is an edge from u to v. Therefore, an interval can dominate or be
dominated by at most Cd intervals containing any particular time stamp.

Consider now some set of intervals Ii corresponding to the neighbors of interval i. Let
tmed be the median of their starting times. Since at most Cd of these intervals contain tmed,
at least

⌊
|Ii|/2

⌋
− Cd intervals have start times less than tmed and at least

⌊
|Ii|/2

⌋
− Cd in-

tervals have start times greater than tmed. The number of neighbors of the two intervals ob-
tained by splitting i is therefore half that of i, within a constant of Cd. Furthermore, both
i1 and i2 could be neighbors of all intervals of Ii containing tmed, but the rest of the in-
tervals in Ii are split among N(i1) and N(i2). Hence |N(i1)| + |N(i2)| ≤ |N(i)| + Cd. �

We now show that the amortized cost of a sequence of iSplit and iSplitAtTime operations
is O(1) assuming that the operations start with a interval data structure with one (or a constant
number of) intervals, and that each call to insert aux takes amortized constant time. For the
proof, we assume that the performance invariants hold before iSplit, i.e. that the number of
neighbors of an interval is bounded by a constant C. We show that the operation maintains
the performance invariant.

Theorem 2 (Amortized cost for iSplit)
The amortized space and time cost of an iSplit or iSplitAtTime operation is O(1). In
particular, the size of an interval data structure is linear in the number of explicit iSplit and

7

www.manaraa.com

iSplitAtTime operations. Moreover, every interval of the data structure after the operation
has at most C neighbors.

Proof: In this proof, we assign credits to each pointer at its creation.
The time it takes to find tmed, together with the time to reassign neighbor pointers when

splitting an interval is at most some constant since by the performance invariant every interval
has at most a constant number of neighbors. Suppose this time is bounded by γC, for a constant
γ > 1. Then it is sufficient to add 4γ credits to each new pointer created.

We maintain the invariant that for every interval i, the sum of credits on its neighbor pointers
is at least 4γ(|N(i)| − C/2− Cd).

If an interval on C neighbors is to be split, then it has at least 4γ(C/2− Cd) credits on its
neighbor pointers. Then to find tmed, split the interval into two and to fix up the pointers, use
γC of the credits. There are at least γC − 4γCd credits left. Since creating the new interval
could cause the creation of at most 2Cd new pointers, use 8γCd to give each of those 4γ credits.
There are at least γC−12γCd credits left on the two intervals caused by the split. The number
of neighbors on each of these two intervals is at most C/2 + Cd, so as long as C ≥ 12Cd, the
number of credits suffices to ensure the invariant. As a base case, when an interval is created,
it has at most C/2 + Cd creditless pointers. Whenever a new pointer is added to it, it gets an
extra 4γ credits which are only used when it is split.

An iSplitAtTime operation needs to pay γC credits for splitting and updating pointers and
Cd×4γ to add credits to the new pointers it creates. The amortized runtime is hence O(1). Be-
cause the credits only come from iSplitAtTimes, and since each such operation only spends a
constant number of credits, the number of pointers in the data structure is linear in the number
of called iSplitAtTimes. Furthermore, since if an interval gets more than C neighbors, it is split,
no interval has more than C neighbors. This also implies that the number of intervals in the
data structure (hence its size) is linear in the number of iSplitAtTimes called by the user. �

5 Traceable Data Structures

We describe how to represent fully and partially persistent and traceable data structures with
interval data structures. The representation relies on keeping different values of the vertices of
the data structure in intervals and uses Split-Find-Insert data structures [9, 10, 12] to provide
fast access to the history of the read and write operations. We prove that all operations take
amortized constant time; we show in Section 6 that the bound is optimal.

5.1 Split-Find-Insert Data Structures

A set splitting problem is defined on a totally ordered universe U . One is given a subset
X ⊆ U on n elements partitioned into a collection of named sets of consecutive elements. A
Split-Find-Insert data structure supports the following operations:

• initSFI(x, id): given an element x ∈ X and a name id, create a data structure containing
just one set {x} with name id;

• find(x): given an element x ∈ X, find the set in which x is contained and return its name;
• split(x, id): given an element x ∈ X, and a name id, split the set S in which x is contained

into two sets S1 = {s ∈ S|s ≤ x} and S2 = {s ∈ S|s > x} and rename them so that S2

has the original name of S and S1 is named id. If S2 is empty, then S is renamed to id.
• insert(x, x′): given an element x ∈ X and a new element x′ ∈ U \X, such that x′ > x

and for every y ∈ X \{x}, x < y =⇒ x′ < y, insert x′ in the set containing x immediately
after x.

8

www.manaraa.com

• nextElement(x): returns null if x is the last element and returns the smallest element
of U greater than x.

A Split-Find data structure only supports the operations find and split. Hopcroft and
Ullman [11] described the first Split-Find data structure and gave an O((m + n) log∗ n) bound
for m interleaved split and find operations on an n element universe. Gabow [9] gives an
O(n + mα(n, n)) time algorithm for the same problem, thus guaranteeing amortized α(n, n)
time per operation. If m is known then this bound can be brought down to α(m,n). Both these
algorithms can be extended to also support the insert operation in amortized O(log∗ n) and
O(α(n, n)) time respectively.

The Hopcroft and Ullman, and Gabow data structures work on a pointer machine. La
Poutre [14] shows that Gabow’s construction is essentially optimal by giving an Ω(n+mα(m,n))
lower bound for the Split-Find problem on general pointer machines.

Assuming a RAM model, Gabow and Tarjan [10] give a linear time O(m + n) algorithm for
m interleaved split and find operations on n elements, thus showing that in the RAM model
one can obtain amortized O(1) operations. Imai and Asano [12] further extend Gabow and
Tarjan’s approach to also support insert in amortized O(1) time, in the RAM model. All data
structures cited take O(m + n) space.

A Split-Find (-Insert) data structure does not typically include the nextElement operation.
That operation however is easy to support by storing the elements in an ordered list.

5.2 Traceable Data Structures via Intervals

A traceable data structure is maintained on top of an interval data structure. Notice that
unlike in [7] we assume interval splitting for both partial and full traceability. Driscoll et al.
use node copying instead of node splitting for partial persistence. In the case of traceability,
because reads can be performed on any version, copying a node may cause both parent and
child intervals to have too many pointers, and hence the node copying method is not sufficient
for partial traceability.

Handles are implemented as intervals. More precisely, handle (v, t) (as in the specification
Section 3) is represented as i, where i is an interval that starts at t, i.e., τ(t) = (t, t′) for some t′.
For simplicity, the implementation does not maintain a separate handle set. For completeness,
we include detailed pseudo-code (Figure 4) in Appendix A.

For each interval i the implementation maintains a set of reads and writes, written Ri and
Wi respectively. Each read in Ri is a tuple (id, i, f) where id is the identity of the reader and f
is the field whose contents is read. Each write in Wi is a tuple (id, i, f, j) where id is the identity
of the writer, f is the field being written to and j is another interval. To provide fast access to
the history of the read and write operations, the implementation uses Split-Find-Insert data
structures to store the reads from and writes of each interval. For any handle (interval) i of
node v, these data structures enable finding the first set of reads and writes of v that takes
place after t. A key assumption behind the approach is that each read and write take place
at the start time of an interval. The implementation satisfies this assumption by creating an
interval for each handle (since all reads and writes take place via a handle, this is sufficient).
This is possible because of the iSplitAtTime operation supported by interval data structures.

For each node v, the implementation maintains two Split-Find-Insert data structures Uv

(for Updates) and Av (for Accesses). The elements of Av and Uv are both drawn from the
universe of the intervals of v ordered by their start times. Figure 2 shows an example of how
Uv is maintained. For example, a write was performed on c1 which resulted in c1 pointing to
d1. This created a split on Uc resulting in a set containing c0 with id c1 and the original set

9

www.manaraa.com

which now contains c1 with id null. The implementation ensures the following invariants for
the access and update data structures.

Accesses: The implementation names each set I ∈ Av by either null or an interval. If I is
named by null, then for any interval j ∈ I, there are no reads of v that take place after j.
If I is named by an interval i = (v, t, t′), then i is read and I consists of all intervals of v
that come before i but after the interval j that was last read before i. More precisely, k ∈ I
if k = (v, tk,), tk < t, and there is no read (, k′,) with k′ = (v, t′k,) and tk < t′k < t.

Updates: The implementation names each set I, I ∈ Uv by either null or an interval. If I
is named by null, then for any interval j ∈ I, there are no writes to v that take place
after j. If I is named by an interval i = (v, t, t′), then i is written to and I consists of
all intervals of v that come before i but after the interval j that was last written before
i. More precisely, k ∈ I if k = (v, tk,), tk < t, and there is no write (, k′, ,) with
k′ = (v, t′k,) and tk < t′k < t.

The implementation assumes a one-to-one correspondence between intervals and the ele-
ments of Uv and Av. Since the data structures by Gabow [9] and by Imai and Asano [12] both
store the elements explicitly, this can be achieved by maintaining pointers between each interval
and the corresponding element in Uv and Av.

The initAux and insertAux functions operate on the Split-Find-Insert data structures.
The initAux function creates the access and the update data structures for the vertex specified
by the interval. The insertAux operation inserts the interval j into the access and the update
data structures of the specified vertex after i. The operation assumes that i and j both belong
to the same vertex v.

We now explain how the operations are supported. The new operation creates a traceable
data structure by creating an initial interval and handle for the root, initializing the access and
update data structures for the root, initializing the interval data stucture, and returning the
handle. The newNode, and the newVersion operations perform initialization of new nodes and
new versions respectively. The newNode operation allocates a new node, creates an interval for
it, initializes the auxiliary data structure for the node. The newVersion operation creates a new
version by adding a new interval for the root immediately after the given handle (the operation
requires that the provided handle belong to the root).

Given an interval i of a node v, a field f and a reader id, the read operation starts by
extending the read set for i with the read (id, i, f). It then splits the set of intervals containing
i in the access data structure Av at i (the interval being read). This ensures that the intervals
for which this read is the next read are assigned their own set and named by i. If i has already
been read, then the split operation has no effect. Let j be the interval pointed by field f of
i. To return a handle to j at time t, the operation splits j at t by calling iSplitAtTime; this
ensures that the returned handle has its own interval.

The write operation takes a field f and two intervals i and j belonging to nodes v and u
respectively. Then write has the task of making v have value u at the start time t of i. The
implementation of write differs in the partially and fully traceable cases. The partially traceable
write first updates the given interval i to point to j by extending the points-to function and the
write set of i appropriately. It then calls iSplit on j to maintain the performance invariant.
To ensure that the set of intervals for which the write of i becomes the next write, the operation
splits the update set Uv at i. The fully traceable write can be viewed as a split followed by a
partially traceable write. It first finds the next version t2 after t in the version-tree pre-order.
If this version is contained in τ(i), then i is split at t2. This ensures that the original fields of
the node before the next write are preserved at the versions after t in the pre-order. Notice

10

www.manaraa.com

that the invariants are still maintained after this step, unlike in [7]. If t2 is not in τ(i), then
there is an interval i′ starting at t2 which already contains the correct field values. After this,
the operation proceeds as the write operation for partial traceability and updates the points-to
function, the write set of i, and Uv. The write operations for both partially and fully traceable
data structures require that the start time of the first interval is contained in the interval of the
second. This ensures the second correctness invariant of interval data structures.

The getNextReadHandle(i) operation for i = (v, t, t′) first calls nextElement on Av to find
the interval j that succeeds i. It then finds the earliest interval after j that is read and returns
it, if it exists, and returns null otherwise. Similarly, the getNextWriteHandle(i) operation for
i = (v, t, t′) first calls nextElement on Uv to find the interval j that succeeds i. It then finds
the earliest interval after j that is written and returns it, if it exists and returns null otherwise.
The getReadsWrites operation simply returns all reads and writes of i.

For brevity, we do not describe the getPreviousReadHandle and getPreviousWriteHandle
operations, which by symmetry are very similar to getNextReadHandle and getNextWriteHandle
respectively. Also note that the approach can be extended to support getNextReadHandle and
getNextWriteHandle operations for any field of an interval to find the next write or read of
that field. One interesting application of a getPreviousWriteToField operation is that one
can support nonpointer fields using little space. In particular, one can store a value in a non-
pointer field only in the interval that it was written to. When this field is to be read later from
a different interval, one can use the getPreviousWriteToField operation to recover the value.

Analysis. Since all operations for traceable and persistent data structures each perform a
constant number of calls to iSplit and iSplitAtTime and perform constant additional work,
we immediately obtain amortized O(1) bounds for partially and fully persistent data structures.
Furthermore, an amortized linear space bound for persistent data structures in the number of
newVersion, write and newNode calls. For traceable data structures, the number of intervals
is linear in the number of calls to newVersion, write, newNode, and read. An amortized linear
space usage follows from the linear space usage of the Split-Find-Insert data structures. For the
running time of the operations we establish the following correspondence.

Lemma 3
Consider a a traceable data structure with m interleaved calls to newVersion, write, newNode,
and read performed on it. The following holds:

• write, newVersion, and newNode take (amortized) time proportional to an insert,

• getNextReadHandle and getNextWriteHandle take (amortized) time proportional to a
find,

• read takes (amortized) time proportional to a split followed by an insert

on a Split-Find-Insert data structure with O(m) elements.

Theorem 4
On a traceable data structure on a RAM, m interleaved calls to newVersion, write, newNode,
and read take O(m) time. On a pointer machine, m calls take O(m α(m,m)) time. In both
cases the space usage is O(m).

Persistent Data Structures Since (fully and partially) persistent data structures require
a subset of the operations of (fully and partially) traceable data structures, they can also be
implemented using interval data structures. Appendix A describes such an implementation.
Since persistent data structures do not require storing reads and writes their implementation is
reasonably straightforward.

11

www.manaraa.com

6 Optimality

We show that the bounds we obtain for traceable data structures are optimal for pointer ma-
chines. We give two reductions from a Split-Find problem to (1) a data structure on multi-
ple versions supporting operations read, getNextReadHandle and getReads, and (2) a data
structure on multiple versions supporting write, getNextWriteHandle and getWrites, where
getReads and getWrites return the reads and writes of a handle respectively. For simplicity,
we assume that the reads and writes are done on data fields, which of course can be simulated
by adding extra nodes.

Consider an instance of a Split-Find data structure P on a universe U with w elements, such
that r split and find operations were performed. We first describe the reduction to the read
data structure. For every element t ∈ U , create a new version of v with start time t. Every name
of a set in P is associated with a read of handle of v. A split(t, id) operation is modeled by a
read of v by identity id at time t′ which is the time right after t. A find(t) operation is modeled
by a getNextReadHandle of v at time t, followed by an immediate getReads which returns the
identity of the earliest reader of v after time t. This coincides with the name of the set in which
t lies in P . A read at time t′ splits the intervals of v whose first read handle was after t′ into
two — those whose next read handle should now be t′ (and hence whose time stamps are < t′),
and the remaining ones, whose next read handle does not change. This corresponds exactly to
splitting the set of t in P since t is the last time stamp before t′.

The reduction to the write data structure is similar. First, for every element t ∈ U we do
a write on v1 at time t. After this, a split(t, id) operation is modeled by a write to v2 at
time t′ right after t by identity id. (we add an extra time stamp t∞ greater than all elements
in U). A find(t) operation is modeled by a getNextWriteHandle on v2 at time t, followed by
an immediate getWrites on the returned handle. This returns the identity of the earliest write
to v2 after t, and hence the name of the set in the Split-Find data structure including t.

Hence we have a correspondence between data structures on multiple versions supporting
read, getNextReadHandle and getReads, or write, getNextWriteHandle and getWrites and
Split-Find data structures. By La Poutre’s Ω(n + mα(m,n)) time lower bound [14] for m
interleaved split and find operations on a pointer machine, we obtain

Theorem 5
For any pointer machine there exists a constant d > 0 such that for any w > 1 and r ≥ 0 there
is an instance of a traceable data structure on one node with w versions (or intervals) with

• a sequence of w − 1 read, r getNextReadHandle and r getReadsWrites operations, and

• a sequence of 2w − 1 write, r getNextWriteHandle and r getReadsWrites operations,

so that the execution of either of these by the pointer machine requires d(w + rα(r, w)) steps.

7 Conclusion

This paper presents efficient techniques for tracing and inspecting read and write operations
performed on a data structure, while also allowing these operations to be performed on current
and previous versions. The work extends previous work on persistent data structure with mech-
anisms for tracing and inspecting operations. We show that the mechanisms can be supported
in amortized constant time on the RAM model, and in amortized O(α(m,m)) time on a pointer
machine, where m is the number of operations. We show that the bound for pointer machines
is tight.

12

www.manaraa.com

References

[1] G. S. Brodal. Partially persistent data structures of bounded degree with constant update time.
Nordic J. of Computing, 3(3):238–255, 1996.

[2] B. Chazelle. How to search history. Inf. Control, 64(1-3):77–99, 1985.

[3] P. F. Dietz. Fully persistent arrays. In Workshop on Algorithms and Data Structures, volume 382
of Lecture Notes in Computer Science, pages 67–74. Springer-Verlag, August 1989.

[4] P. F. Dietz and R. Raman. Persistence, amortization and randomization. In SODA ’91: Proceedings
of the second annual ACM-SIAM symposium on Discrete algorithms, pages 78–88, Philadelphia, PA,
USA, 1991. Society for Industrial and Applied Mathematics.

[5] P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list. In Proceedings of the
19th ACM Symposium on Theory of Computing, pages 365–372, 1987.

[6] D. P. Dobkin and J. I. Munro. Efficient uses of the past. In Journam of Algorithms, volume 6,
pages 455–465, 1985.

[7] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38(1):86–124, Feb. 1989.

[8] A. Fiat and H. Kaplan. Making data structures confluently persistent. In SODA ’01: Proceedings
of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 537–546, Philadelphia,
PA, USA, 2001. Society for Industrial and Applied Mathematics.

[9] H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In Proceedings of the
26th Annual IEEE Symposium on Foundations of Computer Science, pages 90–100, 1985.

[10] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set union.
In STOC ’83: Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages
246–251, New York, NY, USA, 1983. ACM Press.

[11] J. E. Hopcroft and J. D. Ullman. Set merging algorithms. SIAM J. Comput., 2(4):294–303, 1973.

[12] H. Imai and T. Asano. Dynamic orthogonal segment intersection search. J. Algorithms, 8(1):1–18,
1987.

[13] H. Kaplan and R. E. Tarjan. Purely functional, real-time deques with catenation. J. ACM,
46(5):577–603, 1999.

[14] J. A. LaPoutre. Lower bounds for the union-find and the split-find problem on pointer machines.
In STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 34–44, New York, NY, USA, 1990. ACM Press.

[15] C. Okasaki. Amortization, lazy evaluation, and persistence: lists with catenation via lazy linking.
In FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS’95), page 646, Washington, DC, USA, 1995. IEEE Computer Society.

13

www.manaraa.com

IDS = (V, F, T, I, ρ)

function initAux (i as (v, ,)) =

Av←initSFI(i, NONE) ; Uv←initSFI(i, NONE)

function insertAux (i as (v, ,), j) =

Av.insert(i, j) ; Uv.insert(i, j)

function new (F) =

i← (root, t0, t∞)
initAux(i)
ρ← {((i, f), null) | ∀f ∈ F}
Wroot ← {}; Rroot ← {}
IDS← ({root}, F, {t0, t∞}, {i}, ρ)
return i

function newNode(i as (, t,)) =

V ← V ∪ {v}, where v 6∈ V
j ← (v, t, t∞)
initAux(j)
I ← I ∪ {j}
Wj ← {}; Rj ← {}
ρ← ρ ∪ {((j, f), null) | ∀f ∈ F}
return j

function newVersion(i as (root, t1,)) =

T ← T ∪ {t2}, where (t2 6∈ T) ∧ (t1 < t2)∧
(∀t ∈ T. t ≤ t1 ∨ t > t2)

j ← splitAtTime(i, t2)
return j

function read (i as (v, t, t′), id, f) =

Ri ← Ri ∪ {(id, i, f)}
Av.split(i, i)
j ← ρ(i, f)
return iSplitAtTime(j, t)

// write for partially traceable data structures

// requires that t ∈ τ(i) ∩ τ(j)
function write (i, id, f, j) =

ρ← (ρ \ {((i, f),)}) ∪ {((i, f), j)}
Wi ←Wi ∪ {(id, i, f, j)} \ {(id′, i, f, j′) ∈W}
iSplit(j)
Uv.split(i, i)

// write for fully traceable data structures

// requires that t ∈ τ(i) ∩ τ(j)
function write (i as (v, t, ti), f, j) =

t2 = T.successorTS(t)
if t2 6= ti then iSplitAtTime(i, t2)
ρ← (ρ \ {((i, f),)}) ∪ {((i, f), j)}
iSplit(j)
Wi ←Wi ∪ {(id, i, f, j)} \ {(id′, i, f, j′) ∈W}
Uv.split(i, i)

function getNextReadHandle(i as (v, ,)) =

j ← Av.nextElement(i)
if (j 6= null) then

return Av.find(j)
else

return null

function getNextWriteHandle(i as (v, ,)) =

j ← Uv.nextElement (i)
if (j 6= null) then

return Uv.find(j)
else

return null

function getReadsWrites(i) = return (Ri, Wi)

Figure 4: Operations on traceable data structures

function init aux (i,f) = no-op

function insert aux (i,f) = no-op

function read ((i, t), n, f) =

for all j ∈ dominatedf (i)
if t ∈ τ(j), then return j

// partially persistent write

function write ((i, t), f, j) =

it ←iSplit(i, t)
ρ← ρ \ {((i, f),)} ∪ {((i, f), j)}
return iSplit(j)

// fully persistent write

function write (i, t, f, j)
i′ = iSplitAtTime(i, t)
(v, t, ti)← i′

t2 = T.successorTS(t)
if t2 6= ti then iSplitAtTime(i′, t2)
ρ← (ρ \ {((i′, f),)}) ∪ {((i′, f), j)}
return iSplit(j)

Figure 5: The operations particular to persistent data structures.

A Pseudocode for implementing traceable data structures via
intervals

Figure 4 gives set-notation pseudocode for our implementation of traceable data structures.
Figure 5 shows the code for the operations particular to the persistent data structures. These
operations when combined with the new, newVersion, and newNode operations from traceable
data structures (Figure 4) provide all required operations. Since persistent data structures do

14

www.manaraa.com

not require tracking the read and write operations, they do not require an auxiliary data
structure for storing intervals—the init aux and insert aux perform no work. The read
operation relies on the observation that a pointer from an interval to another is implicitly
represented by the dominators. The partially persistent write splits the interval being written
to and performs the write. For full persistence, we require a mapping of the version tree into a
total order; this mapping is described by Driscoll et al. [7]. The fully persistent write splits the
interval once, and splits it again if there is not a subsequent interval—this split ensures that
only the current version is affected by this write. The implementation maintains the invariant
that for all handles (i, t), t ∈ τ(i). This makes reading and writing to be performed always on
the correct version of the node.

15

